Reversing type II migration: resonance trapping of a lighter giant protoplanet

نویسنده

  • F. Masset
چکیده

We present a mechanism related to the migration of giant protoplanets embedded in a protoplanetary disc whereby a giant protoplanet is caught up, before having migrated all the way to the central star, by a lighter outer giant protoplanet. This outer protoplanet may get captured into the 2:3 resonance with the more massive one, in which case the gaps that the two planets open in the disc overlap. Two effects arise, namely a squared mass weighted torque imbalance and an increased mass flow through the overlapping gaps from the outer disc to the inner disc, which both play in favour of an outwards migration. Indeed under the conditions presented here, which describe the evolution of a pair of protoplanets respectively Jupiter and Saturn sized, the migration is reversed, while the planets semi-major axis ratio is constant and the eccentricities are confined to small values by the disc material. The long-term behaviour of the system is briefly discussed, and could account for the high eccentricities observed for the extrasolar planets with semi-major axis a > 0.2 AU.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constraints on resonant – trapping for two planets embedded in a protoplanetary disc

Context. A number of extrasolar planet systems contain pairs of Jupiter–like planets in mean motion resonances. As yet there are no known resonant systems which consist of a giant planet and a significantly lower–mass body. Aims. We investigate the evolution of two-planet systems embedded in a protoplanetary disc, which are composed of a Jupiter-mass planet plus another body located further out...

متن کامل

The Migration and Growth of Protoplanets in Protostellar Discs

We investigate the gravitational interaction of a Jovian mass protoplanet with a gaseous disc with aspect ratio and kinematic viscosity expected for the protoplanetary disc from which it formed. Different disc surface density distributions have been investigated. We focus on the tidal interaction with the disc with the consequent gap formation and orbital migration of the protoplanet. Nonlinear...

متن کامل

The effect of type I migration on the formation of terrestrial planets in hot-Jupiter systems

Context. Our previous models of a giant planet migrating through an inner protoplanet/planetesimal disk find that the giant shepherds a portion of the material it encounters into interior orbits, whilst scattering the rest into external orbits. Scattering tends to dominate, leaving behind abundant material that can accrete into terrestrial planets. Aims. We add to the possible realism of our mo...

متن کامل

Models of Accreting Gas Giant Protoplanets in Protostellar Disks

We present evolutionary models of gas giant planets forming in protoplanetary disks. We first consider protoplanet models that consist of solid cores surrounded by hydrostatically supported gaseous envelopes that are in contact with the boundaries of their Hill spheres, and accrete gas from the surrounding disk. We neglect planetesimal accretion, and suppose that the luminosity arises from gas ...

متن کامل

The interaction of planets with a disc with MHD turbulence IV: Migration rates of embedded protoplanets

We present the results of global cylindrical disc simulations and local shearing box simulations of protoplanets interacting with a disc undergoing MHD turbulence. The specific emphasis of this paper is to examine and quantify the magnitude of the torque exerted by the disc on the embedded protoplanets as a function of the protoplanet mass, and thus to make a first study of the induced orbital ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001